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a b s t r a c t

The present contribution documents the interactions between pressure solution and fracturing in
carbonate rocks by studying the mass and volume changes caused by the Oligocene deformation of the
Coniacian chalk from the Omey area. The isocon method allowed to establish that the decreases in
interstitial fluid pressure resulting from the development of one normal fault and related tension gashes
within a 11.4 m wide zone induced mass and volume changes within a 30.2 � 3.5 m wide zone. In the
hangingwall as well as in the footwall, the deformed zones adjacent to the fault plane exhibit mass gains
(up to 58%) while the outermost deformed zones show mass losses (up to 36%). The pressure solution–
fracturing interactions caused a mass redistribution from the most porous zones (outermost deformed
zones) to the least porous zones (deformed zones adjacent to the fault plane) linked to differences in
stress–strain energy of grain aggregates. The mass transfers strongly controlled the volume changes.
Chemical compaction occurred only within the outermost deformed zones where mass losses took place
in response to the reduction in solid–solid contacts. The zones affected by chemical compaction show
equal mass and volume losses.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Pressure solution (fluid-enhanced deformation) is considered to
be a major mechanism of rock deformation. In the upper crust,
pressure solution often plays an important role within zones where
it is spatially associated with brittle deformation (Gratier et al.,
1999). Therefore, it is crucial to examine how these two mecha-
nisms of deformation, operating at two time scales, interact in
order to better understand the complex mechanical behaviour of
the upper crust.

Several contributions have focussed on the interactions
between pressure solution and fracturing processes by studying
natural or experimental deformation in carbonates (Mimran, 1975,
1977; Jones et al., 1984; Carrio-Schaffhauser and Gaviglio, 1990;
Gaviglio et al., 1993, 1997, 1999; Richard et al., 2002; Hellmann
et al., 2002a,b; Angelier et al., 2006). These studies have provided
important data about the pressure solution–fracturing interactions
in carbonates rocks but the mass and volume changes due to these
mechano-chemical interactions were poorly documented. The
present contribution attempts to document these mass and volume
All rights reserved.
changes by studying the Oligocene deformation of the Coniacian
chalk from the Omey area (eastern part of the Paris Basin). Previous
works (Richard et al., 1997, 1999, 2002) highlighted the interest of
this case study in order to examine the interactions between
pressure solution and fracturing processes in carbonate rocks. The
purpose of this paper is (1) to quantify the mass transfers and
volume changes caused by the development of one normal fault
and related tension gashes within a 11.4 m wide zone, (2) to
determine the spatial distribution of these mass transfers and
volume changes, (3) to examine the relationships between the
mass and volume changes and fracturing, and (4) to propose
a physico-chemical model of the deformation mechanism.
2. Geological setting

An extensional stress field associated with the development of
the West-European Rift affected the West-European Platform
during the Oligocene (Bergerat, 1987a,b; Coulon and Frizon de
Lamotte, 1988a; Coulon, 1992). In the eastern part of the Paris Basin,
this extension led to the formation of the Mayence-Sancerre Fault
Zone (Coulon, 1992; Fig. 1).

In the Omey area, the chalk is fractured in a 6-km wide N060�E
zone which follows the trace of the Omey Fault, the northern
border of the Mayence–Sancerre Fault Zone (Coulon and Frizon de
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Fig. 1. Structural map of the eastern part of the Paris Basin (modified after Coulon, 1992) showing the Mayence–Sancerre Fault Zone (M.S.F.Z.) resulting from the Oligocene
extensional stress field associated with the development of the West-European Rift.
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Lamotte, 1988b; Coulon, 1992; Figs. 1 and 2). In this area, the
Oligocene extension reactivated a basement fault that led to the
development of normal faults and tension gashes at depths esti-
mated between �150 and �250 m (Coulon and Frizon de Lamotte,
1988a,b; Coulon, 1992). These fractures grew in an unconfined
phreatic zone where the interstitial fluid was meteoric (Richard
et al., 1999).
Fig. 2. Geological map of the Omey area with location of the Marson Quarry (modified afte
zone which follows the trace of the Omey Fault (northern border of the Mayence–Sancerre
3. Sampling, methods and analytical techniques

3.1. Sampling

Sixty samples of Coniacian chalk were collected along a 100 m
wide working face (Fig. 3A) in the Marson Quarry (Fig. 2). This
outcrop shows a 11.4 m wide fractured zone with one normal fault
r Coulon and Frizon de Lamotte, 1988b). The chalk is fractured in a 6-km wide N060�E
Fault Zone).
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Fig. 3. (A) Sketch of the studied working face with location of collected samples. (B) Stereographic projection of the normal fault plane F, the striation lineations borne by F and the
poles to tension gashes (white squares). (C) Four fracture network types (FN 1, 2, 3 and 4) can be distinguished by using the aperture width and the spatial distribution of fractures.
(D) Fracture network type of the 60 sampling points.
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and tension gashes filled by calcite cements (Fig. 3A,B). Four fracture
network types can be distinguished along the working face by using
the aperture width and the spatial distribution of fractures (Fig. 3C):

– FN 1: weakly fractured zone with subvertical and irregularly
spaced tension gashes which show an aperture width �1 mm;

– FN 2: moderately fractured zone with subvertical and irregu-
larly spaced tension gashes which display an aperture width
�5 mm;

– FN 3: strongly fractured zone with subvertical and irregularly
spaced tension gashes which present an aperture width
�200 mm;

– FN 4: very strongly fractured zone showing subvertical, irregularly
spaced and connected tension gashes which show an aperture
width�200 mm or brecciated chalk located along the fault plane.

The fracture network type of the 60 sampling points is given in
Fig. 3D.

3.2. Mass and volume changes: method

Isocon method is an effective means of quantitatively evaluating
changes in volume and mass in a wide range of geological processes
(Grant, 1986, 2005). In the isocon analysis, the Gresens’ equation
(Gresens, 1967) was rewritten as:

CA
i ¼ MO=MA

�
CO

i þ DCi

�
(1)

where CO
i and CA

i are the concentrations of the major or trace
element i in the original and altered rock respectively, MO and MA

are the masses of the original and altered rock respectively and DCi

denotes the change in concentration of the major or trace element i
between the original and altered rock. For an immobile element,
the equation (1) can be written:

CA
i =CO

i ¼ MO=MA ¼ 1 (2)

because DCi ¼ 0. The masses of the original and altered rock (MO

and MA respectively) can be expressed by the formulae:

MO ¼ rOVO (3)

MA ¼ rAVA (4)

where r is the bulk density and V the volume. Combining the
equation (2) with the equations (3) and (4), we can write:

CA
i =CO

i ¼ MO=MA ¼
�

rOVO
�
=
�

rAVA
�
¼ 1 (5)

Equation (5) allows calculation ofthe changes in volume and
mass by using the analytical data CO

i , CA
i , rO and rA:

VO=VA ¼
�

CA
i =CO

i

� �
rA=rO

�
(6)

MO=MA ¼
�

rO=rA
� �

VO=VA
�
¼ CA

i =CO
i (7)

VO/VA (or MO/MA) > 1 indicates a volume (or mass) loss, VO/VA (or
MO/MA) < 1 indicates a volume (or mass) gain, VO/VA (or MO/
MA) ¼ 1 indicates an alteration without change in volume (or
mass). In this paper, the volume and mass changes are given in %.

3.3. Analytical techniques

3.3.1. Geochemical analyses
The concentrations of 53 elements were measured in SARM

(Service d’Analyse des Roches et des Minéraux, Vandoeuvre-lès-
Nancy, France) by:
– AAS (atomic absorption Perkin Elmer 5100): Si, Al, Fe, Mn, Mg,
Ca and Na;

– ICP-MS (mass spectrometer Perkin Elmer 5000): As, Ba, Be, Bi,
Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, In, La, Lu, Mo,
Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb,
Zn and Zr;

– absorptiometry (spectrophotometer Beckman DU62): Ti and P.

The samples were ground to fine powders in an agate ball mill.
The subsamples were fused with lithium metaborate and the melts
dissolved in acid solutions. The concentrations are expressed in
parts per million (ppm). In the concentration ranges observed in
this study, the analytical accuracy is:

– <5% for Ca, Eu, Gd, La, Nd, Sr, Tb and Y;
– <10% for Al, Ba, Ce, Dy, Er, Ho, K, Lu, Mg, Mn, Na, Pb, P, Pr, Si, Sm,

U and Yb;
– <15% for Co, Nb, Rb, Th, Zn and Zr;
– <20% for Fe;
– >25% for Ga, Hf, Ni, Ta, Tm and V.

The carbon and oxygen isotope analyses were carried out in the
Institute of Geology of Bern University (Switzerland) using a VG
Prism II mass spectrometer. The samples were ground to fine
powders in an agate ball mill. The samples were dissolved in H3PO4

at 90 �C. All measurements were calibrated to the Pee Dee Belem-
nite (PDB) standard and the isotope ratios are given in the
conventional d-notation. The analytical accuracy is �0.1& for d18O
and �0.05& for d13C.

3.3.2. Bulk density measurements
Water porosimetry measurements were performed to deter-

mine the bulk density. The samples were dried at 60 �C until they
reached a stable mass (Md). They were then degassed during 24 h
in an airtight enclosure before being progressively saturated,
from their bottom, with a degassed and distilled water under
a dynamic vacuum. The bulk density (r) is given by the
expression:

r ¼ Md=ðM1 �M2Þ

where M1 is the mass of the sample entirely saturated with
a degassed and distilled water and M2 is the mass of the under-
water sample. The analytical accuracy is �0.002.
4. Results

4.1. Geochemical signature of the deformation

4.1.1. Major and trace elements
The elemental signature of the deformation was clarified by

studying 53 chemical elements. The concentrations of 15 elements
(As, Be, Bi, Cd, Cr, Cs, Cu, Ge, In, Mo, Sb, Sn, Ta, Ti and W) are below
detection limits. 25 elements show strong evidence of variations
caused by the development of the studied fractured zone. The
examination of concentration versus sample position curves and
the correlation matrix from the normalised principal component
analysis of the chemical data-set allow to distinguish 5 elemental
signatures:

– Sr (Fig. 4): The Sr concentrations range between 367 ppm
(lowest value, sample 35) and 738 ppm (highest value, sample
54). In the brecciated chalk (samples 56 to 60), the concen-
trations vary between 378 and 478 ppm (mean ¼ 423 ppm).
The Sr concentrations are depleted within a 30.2 � 3.5 m wide
zone (samples 9–10 to 45–47). The Sr-depleted zone is wider
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than the fractured zone in the hangingwall as well as in the
footwall.

– Al, K, Rb, Si, Ta, Th, Y and rare earth elements: These major and
trace elements display the same behaviour. The Al concentra-
tion versus sample position curve (Fig. 4) allows description of
this behaviour. The Al concentrations range between 635 ppm
(lowest value, sample 35) and 1323 ppm (highest value,
samples 23 and 45). In the hangingwall, the Al concentrations
increase within an external zone (samples 10, 11, 13, 15, 20 and
23) where the chalk is not or weakly (FN 1) fractured and they
decrease within an internal zone (samples 25, 27, 29, 30, 32 to
35) where the chalk is weakly (FN 1) to strongly (FN 3) frac-
tured. In the footwall, an Al enrichment is observed within an
external zone (sample 45) where the chalk is not fractured and
an Al depletion is noticed within an internal zone (samples 36,
38, 40 and 42) where the chalk is not or weakly (FN 1) to
moderately (FN 2) fractured. The Al content is modified within
a 30.2 � 3.5 m wide zone (samples 9–10 to 45–47). The
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Al-modified zone is wider than the fractured zone in the
hangingwall as well as in the footwall.

– Mn (Fig. 4): The Mn concentrations vary between 155 ppm
(lowest value, sample 29) and 271 ppm (highest value, sample
2). Mn depletion is observed in both sides of the fault plane
within a 2.1 � 0.3 m wide zone (samples 27–29 to 38–40). In
this Mn-depleted zone, samples 35 and 36 show the highest
concentrations.

– Fe (Fig. 5): The Fe concentrations range between 406 ppm
(lowest value, sample 9) and 3147 ppm (highest value, sample
35). Fe enrichment is observed near the fault plane within
a 1.1 � 0.6 m wide zone (samples 30–32 to 37–38);

– Na (Fig. 5): The Na concentrations vary between 97 ppm
(lowest value, samples 33 and 34) and 171 ppm (highest value,
samples 49 and 54). Na depletion is observed within
a 23.7 � 3 m wide zone (samples 10–11 to 44–45). The Na-
depleted zone is wider than the fractured zone in the hang-
ingwall as well as in the footwall.

Unlike rare earth element concentrations, the development of
the fractured zone did not induce significant modifications in
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rare earth element pattern: all rare earth element patterns are
similar in shape (Fig. 6). They are characterized by a distinct
negative Ce anomaly and by a flat baseline reflecting a lack of
fractionation between light, middle and heavy rare earth
elements (Fig. 6).

4.1.2. Carbon and oxygen stable isotopes
d13C (Fig. 7): The d13C values range between �2.07& (lowest

value, sample 35) and 2.79& (highest value, sample 3). In the
brecciated chalk (samples 56–60), the d13C values vary between
�0.68 and �0.30& (mean ¼ �0.41&). A d13C depletion is
observed within a 15.1 �1.9 m wide zone (samples 20–21 to 44–
45). In the footwall, the d13C-depleted zone is wider than the
fractured zone.

d18O (Fig. 7): The d18O values range between �3.86& (lowest
value, sample 35) and �1.3& (highest value, sample 18). In the
brecciated chalk (samples 56 to 60), the d18O values vary between
�3.49 and �3.37& (mean ¼ �3.43&). A d18O depletion is
observed within a 18 � 3.1 m wide zone (samples 20–23 to 45–
47). In the footwall, the d18O-depleted zone is wider than the
fractured zone.
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4.1.3. Geochemical delimitation of the deformed zone
The geochemical data reveal that the most sensitive markers of

the deformation are Sr and Al (Al displays the same variations as K,
Rb, Si, Ta, Th, Y and rare earth elements). Sr and Al contents indicate
that the development of the fractured zone induced modifications
within a 30.2 � 3.5 m wide zone (samples 9–10 to 45–47, Fig. 4).
This geochemically modified zone is wider than the fractured zone
(11.4 m, samples 15 to 41) and it is wider in the hangingwall
(17.5 � 1.5 m, samples 9–10 to 35) than in the footwall (12.7 � 2 m,
samples 36 to 45–47). But the ratio WGZ/WFZ (WGZ: geochemically
modified zone width, WFZ: fractured zone width) is higher in the
footwall (12.7 � 2 m/1.1 m ¼ 9.7–13.4) than in the hangingwall
(17.5 � 1.5 m/10.3 m ¼ 1.55–1.85). The geochemically modified
zone outside the fractured zone is wider in the footwall (11.6 � 2 m,
samples 41 to 45–47) than in the hangingwall (7.2 � 1.5 m, samples
9–10 to 15).
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4.2. Mass and volume changes

4.2.1. Identification of immobile elements
In order to quantify the changes in mass and volume due to the

deformation by using the isocon method, immobile elements must
be first identified (Grant, 2005). Some evidence suggests that Al, K,
Rb, Si, Ta, Th, Y and rare earth elements are insoluble residue
proxies in the Coniacian chalk from the Omey area and that they
can be reasonably considered as immobile elements during the
deformation:

– It is established that Al, Si, K and rare earth elements can be
considered as insoluble residue proxies in chalk (Jarvis, 1980,
1992; Wray, 1995; Jarvis et al., 2001; Pearce et al., 2003). The
Coniacian chalk from the Omey area is a ‘‘white chalk’’ with an
insoluble residue below 2.5%. Its clay association mainly
consists of illite, smectite and kaolinite (Labourguigne and
Mégnien, 1975). Considering the characteristics of the diage-
netic environment during the deformation in the Omey area
(Coulon and Frizon de Lamotte, 1988b; Richard et al., 1999),
especially the depth (from �150 to �250 m) and the temper-
ature (below 50 �C), it is reasonable to consider that the clay
association of the Coniacian chalk was protected from signifi-
cant diagenetic effects (Chamley, 1989; Weaver, 1989; Bergaya
et al., 2006).

– The Al and Sr behaviours are different (Fig. 4). The Sr
behaviour is due to the dissolution of primary (marine)
carbonate phases and the precipitation of secondary
carbonate phases in presence of meteoric porewaters (Richard
et al., 2002).

– The rare earth element pattern (Fig. 6) does not show
significant modifications caused by the deformation (Section
4.1.1).

– The observations in polarized light microscopy, cath-
odoluminescence microscopy and SEM show that no evidence
of dissolution and/or precipitation of silica is observed in the
chalk or in the syntectonic cements filling the normal fault and
the tension gashes of the studied outcrop.

– The correlation matrix from the normalised principal compo-
nent analysis of the chemical data-set indicates that Al, K, Rb,
Si, Ta, Th, Y and rare earth elements are strongly correlated. This
positive correlation reveals that these elements shared the
same behaviour during the deformation.
4.2.2. Analytical data used
The changes in mass and volume (Fig. 8) were quantified by

using the Al content because the normalized principal component
analysis of immobile element concentrations (Al, K, Rb, Si, Ta, Th, Y
and rare earth elements) shows that Al has the highest mean
correlation coefficient (0.964).

In order to calculate the changes in mass and volume due
to the deformation, the equations (6) and (7) were applied
(Section 3.2):

VO=VA ¼
�

CA
i =CO

i

� �
rA=rO

�
(6)

MO=MA ¼
�

rO=rA
� �

VO=VA
�
¼ CA

i =CO
i (7)

To use the equations (6) and (7), it is necessary to determinate
the Al concentrations in the original and altered rock (CO

i and
CA

i respectively) and the corresponding bulk densities (rO

and rA). The examination of the Al concentration versus sample
position curve (Section 4.1.1) allows definition and comparison
of the Al signature of the original chalk from the hangingwall
and the footwall (Table 1). The original chalk from the hang-
ingwall and the footwall shows two different Al signatures
(Table 1) linked to a chemostratigraphic variability. So the
hangingwall and the footwall were studied by using two
different reference values (Table 1). The samples used to
calculate the reference values CO

i do not show evidence of
petrophysical modifications due to the deformation (Richard
et al., 2002). Therefore CO

i and rO were calculated by using the
same samples (Table 1).
4.2.3. Quantification and spatial distribution of mass and volume
changes

In the hangingwall, two diagenetic evolution types (A and B)
can be distinguished (Fig. 8). Type A is observed in samples 10, 11,
13, 15, 20 and 23. It is characterized by mass and volume losses
which reach respectively 36% and 35% (highest values, sample 23).
The mass and volume changes are very close with a maximal
difference of 4% (Fig. 9). Type B (samples 25, 27, 29, 30 and 32 to
35) is characterized by mass gains without volume change. The
highest mass gain reaches 58% (sample 35). In the hangingwall,
the diagenetic evolutions of type A and type B show a spatial
distribution. Type A is observed within an external zone where
the chalk is not or weakly (FN 1) fractured while type B is located
within an internal zone where the chalk is weakly (FN 1) to
strongly (FN 3) fractured (Fig. 8). Sample 17 exhibits a distinct
diagenetic evolution related to the development of a type 3
fracture network (sample 18) within a wide zone where the
chalk is not or weakly (FN 1) fractured. It probably represents the
result of an intermediate diagenetic evolution between the types
A and B.

The type A and type B diagenetic evolutions are also recognized
in the footwall (Fig. 8): sample 45 shows a type A while samples 36,
38, 40 and 42 exhibit a type B. The mass or volume gains and losses
are similar to those observed in the hangingwall but, in the foot-
wall, type A is only observed outside the fractured zone and type B
is recognized within an internal zone where the chalk is not or
weakly (FN 1) to moderately (FN 2) fractured. Sample 44 probably
represents an intermediate diagenetic evolution between the types
A and B.
4.2.4. Comparison with previous works
A previous study (Richard et al., 2002) allowed to distinguish

two diagenetic evolutions by using the bulk density (r) of chalk
and the percentage (x) of secondary calcite (calcite precipitated in
chalk during the deformation) calculated with the Sr concentra-
tions (Fig. 10A). One of these diagenetic evolutions is character-
ized by a secondary calcite precipitation without any change in
dry density. The other shows a secondary calcite precipitation and
an increase in dry density. The comparison of results of this
previous study with the mass and volume changes (Fig. 10A,B)
reveals that:

– Type A diagenetic evolution is observed where the deforma-
tion caused a secondary calcite precipitation without any
change in dry density. No change in dry density involves
equal changes in mass and volume: the mass and volume
changes observed for the type A diagenetic evolution are very
close, the difference never exceed 4% (Section 4.2.3). These
diagenetic modifications are in agreement with an increase in
insoluble residue.

– Type B diagenetic evolution is observed where the deformation
induced a secondary calcite precipitation associated with an
increase in dry density. An increase in dry density is in agree-
ment with a mass gain without volume change and a decrease
in insoluble residue.
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Table 1
Al signature of the original chalk (Ci) from the hangingwall and the footwall and
corresponding bulk densities (rO)

Al Bulk density

Hangingwall Footwall Hangingwall Footwall

Samples 1, 2, 3, 4, 6, 9 47, 49, 52, 54, 55 1, 2, 3, 4, 6, 9 47, 49, 52, 54, 55
Minimum value 847 ppm 1058 ppm 1.574 1.510
Maximum value 1006 ppm 1217 ppm 1.628 1.633
Range 159 ppm 159 ppm 0.054 0.123
Mean 926 ppm 1111 ppm 1.609 1.567
Reference values 847/1006 ppm 1058/1217 ppm 1.574/1.628 1.510/1.633
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– The deformed zones recognized with these two approaches are
the same (from samples 9–10 to 45–47).

Previous petrophysical measurements and SEM observations
(Richard et al., 2002) compared with the mass and volume changes
(Fig. 10B–D) indicate that:

– type A diagenetic evolution displays an increase in kh (per-
meability � capillary suction) and pore access diameters
without any change in chalk fabric, particle contacts, propa-
gation velocity of longitudinal ultrasonic waves, total porosity
and trapped porosity (Fig. 10B, C, sample 20);

– type B diagenetic evolution shows a change in chalk fabric and
particle contacts (important increase in solid–solid contacts),
a decrease in total porosity, kh and pore access diameters and an
increase in trapped porosity and propagation velocity of longi-
tudinal ultrasonic waves (Fig. 10B, C, samples 31 and 35).

A comparison between the percentages (x) of secondary calcite
calculated with the Sr contents (Richard et al., 2002) and the mass
gains and losses shows that:

– precipitation occurred in chalk showing a diagenetic evolution
of type A despite the mass losses: for example, the percentage
of secondary calcite of sample 15 varies from 13% to 25% while
the mass loss ranges between 14% and 27%;

– dissolution occurred in chalk showing a diagenetic evolution of
type B despite the mass gains: for example, the mass of
secondary calcite of sample 35 ranges between 58 g and 81 g
(for an original mass ¼ 100 g) while the mass gain varies from
33 g to 57 g.
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Fig. 9. Comparison between the mass and volume changes in samples showing a type
A diagenetic evolution. The mass and volume changes are very close with a maximal
difference of 4%. The mass and volume changes were calculated by using the mean
values of Al content and bulk density of the original chalk.
5. Interpretation and discussion

5.1. Mass changes

In the studied natural system, the mass gains are observed
within the type B deformed zones adjacent to the fault plane while
the mass losses are observed within the outermost deformed zones
(type A deformed zones) neighbouring the type B deformed zones
(Section 4.2.3, Fig. 8). What are the mechanisms operating in these
mass changes?

The precipitation of secondary calcite induced by the deforma-
tion was quantified by using the Sr contents (Richard et al., 2002).
The results of this quantification compared with the mass gains and
losses (Section 4.2.4) reveal that precipitation took place within the
type A deformed zones despite the mass losses and that dissolution
occurred within the type B deformed zones despite the mass gains.
According to the physico-chemical model of the deformation
mechanism recognized for this natural system (Richard et al.,
2002), it appears that:

– Within the type A deformed zones, precipitation probably
occurred at the solid-fluid contacts (free faces of particles)
when the interstitial fluids were supersaturated with respect to
calcite (Fig. 11).

– Within the type B deformed zones, dissolution probably took
place at the solid-fluid contacts during the undersaturated fluid
inputs (Fig. 11). This dissolution was restricted by the decrease
in total porosity and transport properties recognized in the
chalk of the type B deformed zones (Section 4.2.4). The mass
gains without volume change observed within the type B
deformed zones imply that there was no dissolution along the
solid–solid contacts (particle contacts) by increase in normal
stresses and at the margins of solid–solid contacts by increase
in plastic or elastic energy (Fig. 11).

It follows that precipitation and dissolution occurred within the
deformed zones of types A and B, but this study clearly indicates
that the ratio dissolution/precipitation is above 1 within the type A
deformed zones and below 1 within the type B deformed zones
(Fig. 11). The petrophysical and SEM characteristics of the chalk of
the deformed zones of types A and B (Section 4.2.4) allow expla-
nation of this phenomenon. Within the type B deformed zones, the
particles are under lower stress–strain energy than within the type
A deformed zones. This lower stress–strain energy within the type
B deformed zones is linked to more important particle contacts.
Dissolution preferentially thus took place within the most porous
zones (type A deformed zones) with a positive feedback relation-
ship between the total porosity and dissolution (Merino et al., 1983;
Merino, 1992) and precipitation preferentially occurred within the
least porous zones (type B deformed zones). It is reasonable to
consider that the mass gains and losses described in this study
correspond to a mass redistribution from the most to the least
porous zones (Fig. 11). Chalk of the type A deformed zones shows
the highest transport properties (highest kh and pore access
diameter, Fig. 10C). A positive feedback relationship between the
transport properties and dissolution probably operated within
the type A deformed zones: a faster interstitial fluid flow through
the medium promotes faster local dissolution (Ortoleva et al.,
1987a,b).

The comparison between the results of the present study and
the SEM observations (Fig. 10B–D) shows that, at the grain scale,
the mass gains promoted an overgrowth of particles with
a change in shape (from regular to irregular) and morphology
(from anhedral to subhedral/euhedral), a modification in particle
contacts (from point-contacts to straight or curved compromise
contacts) and an increase in the amount of secondary particles
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Fig. 10. Diagenetic evolutions caused by the development of one normal fault and related tension gashes in the Coniacian chalk from the Marson Quarry. (A) Diagenetic evolutions
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Fig. 11. Physico-chemical model of the deformation mechanism of the Coniacian chalk from the Marson Quarry. In the Omey area, the Oligocene extension led to the development
of normal faults and tension gashes in an unconfined phreatic zone (between �150 and �250 m) where the interstitial fluid was meteoric. The development of these fractures
induced through time temporary decreases in interstitial fluid pressure and flows of porewaters through chalk to active fractures. Each decrease in interstitial fluid pressure led first
an input of undersaturated fluids with respect to calcite (t1). During this stage, dissolution occurred within the type A deformed zones, along the solid–solid contacts (particle
contacts) by increase in normal stresses, at the margins of the solid–solid contacts by increase in plastic or elastic energy and at the solid-fluid contacts (free faces of particles).
Within the type B deformed zones, dissolution took place at the solid fluid-contacts. Each decrease in interstitial fluid pressure involved secondly the flow of supersaturated fluids
with respect to calcite (t2). During this stage, dissolution continued along the solid–solid contacts within the type A deformed zones and precipitation took place at the solid-fluid
contacts within the deformed zones of types A and B. A positive feedback relationship between the transport properties and dissolution probably operated within the type A
deformed zones. The percentage of secondary calcite (calcite precipitated in chalk during the deformation at the free faces of particles) calculated with the Sr concentrations ranges
between 12% and 24% within the type A deformed zones and between 21% and 47% within the type B deformed zones. The ratio dissolution/precipitation is above 1 within the type
A deformed zones and below 1 within the type B deformed zones. A mass redistribution took place from the most porous zones (outermost deformed zones) to the least porous
zones (deformed zones adjacent to the fault). These mass transfers induced volume losses within the type A deformed zones where chemical compaction occurred in response to
the reduction in solid–solid contacts.
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related to cementation of coccolith fragments and/or primary
particles. The nucleation of new crystals is scarce. Dissolution pits
at the free faces of particles, notably at the rim of pores, is the
only evidence for mass losses. The SEM observations also show
that the chalk fabric within the deformed zones of types A and B
is not uniform: one sample always displays several fabrics (point-
contact, welded, interlocked and/or coalescent). The mass gains
and losses do not therefore appear uniform within the chalk at
the grain scale.

5.2. Volume changes

No volume change is observed within the type B deformed
zones while the type A deformed zones show significant
volume losses (Section 4.2.3, Fig. 8). An explanation can be
proposed by considering the SEM and petrophysical character-
istics of the deformed zones of types A and B (Section 4.2.4,
Fig. 10) and the physico-chemical model proposed for this
natural system (Fig. 11). Within the type A deformed zones,
dissolution occurred along the solid–solid contacts by increase
in normal stresses and at the margins of the solid–solid
contacts by increase in plastic or elastic energy (Fig. 11). A
chemical compaction therefore took place in response to these
mass losses. Conversely, within the type B deformed zones, the
mass gains promoted an increase in solid–solid contacts that
inhibited the chemical compaction. Within the type A deformed
zones, no evidence suggests that the chemical compaction is
more intense in particular zones.
5.3. Relationships between mass and volume changes and
fracturing

At first sight, it appears that the type A deformed zones are
observed where the chalk is not or weakly fractured and that the
type B deformed zones are localized within the most fractured
zones (Fig. 8). But a more detailed examination of data allows
refinement of this conclusion:

– The spatial distribution of type B deformed zones (and
consequently the spatial distribution of type A deformed
zones) is strongly controlled by the distance to the fault plane
because (1) in the hangingwall and the footwall, the type B
deformed zones are adjacent to the fault plane and (2) in the
footwall, the mass gains are equal to those observed within
the hangingwall though the chalk is not or weakly fractured
(Fig. 8). This case study did not allow to fully clarify the
control of tension gashes on the mass transfers. Nevertheless,
it appears that they played a significant role because (1) they
induced, like the fault, temporary decreases in interstitial
fluid pressure which promoted and activated the deformation
mechanism (Richard et al., 1999, 2002; Fig. 11), (2) the field
observations show that the development of tension gash
networks without fault promoted a chalk deformation with
mass transfers, and (3) sample 17 indicates that the devel-
opment of a type 3 fracture network within a type A
deformed zone inhibited the related mass and volume losses
(Fig. 8).

– The development of tension gashes restricts the diagenetic
impact of the fault when it reaches a threshold (probably
between FN 2 and 3): the type B deformed zone is wider in the
footwall (5.7 � 2 m) than in the hangingwall (2.9 � 1.3 m)
though fracturing is more important in the hangingwall (FN 1–
3, mainly FN 2 and 3) than in the footwall (not fractured to FN 2,
mainly FN 1). The reduction of the diagenetic impact of the
fault results from a partition of the medium which probably
induced a decrease in temporary flows of porewaters through
pore space due to the fault activity (notably in the
hangingwall).

The strong control of the spatial distribution of the deformed
zones of types A and B by the distance to the fault plane and the
restriction of the diagenetic impact of the normal fault induced by
the development of tension gashes explain that:

– the ratio WGZ/WFZ (WGZ: geochemically modified zone width,
WFZ: fractured zone width) is higher in the footwall
(12.7 � 2 m/1.1 m ¼ 9.7–13.4) than in the hangingwall
(17.5 � 1.5 m/10.3 m ¼ 1.55–1.85);

– the geochemically modified zone outside the fractured zone is
wider in the footwall (11.6 � 2 m, samples 41 to 45–47) than in
the hangingwall (7.2 � 1.5 m, samples 9–10 to 15).
6. Conclusions

The present contribution highlights that the interactions
between pressure solution and fracturing processes can induce
important mass transfers and volume changes in carbonate
rocks. The mass and volume changes caused by the develop-
ment of one normal fault and related tension gashes occur in
the hangingwall as well as in the footwall. These mass and
volume changes show a spatial distribution: the deformed
zones adjacent to the fault plane exhibit mass gains without
volume changes while the outermost deformed zones display
equal mass and volume losses. This spatial distribution is
strongly controlled by the distance to the fault plane but the
tension gashes probably play a significant role. They notably
restrict the diagenetic impact of the fault by partitioning the
medium. The mass changes result from mass transfers from the
most porous zones (outer deformed zones) to the least porous
zones (deformed zones adjacent to the fault) due to differences
in stress–strain energy of grain aggregates. Pressure solution
operates with a negative feedback relationship between the
solid–solid contacts and dissolution and a positive feedback
relationship between the transport properties and dissolution.
At the grain scale, the mass gains and losses do not appear
uniform within chalk. The mass transfers induce volume losses
within the outermost deformed zones where chemical
compaction takes place in response to the reduction in solid–
solid contacts.
Acknowledgements

I would like to thank Dr. R.E. Holdsworth, Dr. J.P. Gratier and an
anonymous reviewer for their extensive and constructive
comments that led to substantial improvements of the manuscript.
I am grateful to O. Fabbri for his comments and English
proofreading.
References

Angelier, J., Vandycke, S., Bergerat, F., Gaviglio, P., Schroeder, C., Coulon, M., 2006.
Can belemnite distribution reveal pressure-solution processes along faults? A
case study in chalk of the Mons Basin, Belgium. Journal of Structural Geology
28, 64–82.

Bergaya, F., Theng, B.K.G., Lagaly, G., 2006. Handbook of clay science. In: Develop-
ments in Clay Science 1. Elsevier. 1141-1149.

Bergerat, F., 1987a. Stress fields in the European platform at the time of Africa-
Eurasia collision. Tectonics 6, 99–132.
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de la Société Géologique de France 5, 531–540.

Coulon, M., Frizon de Lamotte, D., 1988a. Les extensions cénozoı̈ques dans l’est du
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Experimental pressure solution compaction of chalk in aqueous solutions. Part
2. Deformation examined by SEM, porosimetry, synthesis permeability and X-
ray computerized tomography. In: Hellmann, R., Wood, S.A. (Eds.), Water–Rock
Interactions, Ore Deposits, and Environmental Geochemistry. Special Publica-
tions, no. 7. The Geochemical Society, pp. 153–178.

Jarvis, I., 1980. Geochemistry of phosphatic chalks and hardgrounds from the
Santonian to early Campanian (Cretaceous) of northern France. Journal of the
Geological Society, London 137. 705-721.
Jarvis, I., 1992. Sedimentology, geochemistry and origin of phosphatic chalks: the
Upper Cretaceous deposits of NW Europe. Sedimentology 39, 55–97.

Jarvis, I., Murphy, A.M., Gale, A.S., 2001. Geochemistry of pelagic and hemipelagic
carbonates: criteria for identifying systems tracts and sea-level change. Journal
of the Geological Society, London 158. 685-696.

Jones, M.E., Bedford, J., Clayton, C., 1984. On natural deformation mechanisms in the
chalk. Journal of the Geological Society, London 141. 675-683.
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